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First, the ideas introduced in the wormhole research field since the work of Morris and Thorne are reviewed,
namely, the issues of energy conditions, wormhole construction, stability, time machines and astrophysical
signatures. Then, spherically symmetric and static traversable Morris-Thorne wormholes in the presence of a
generic cosmological constart are analyzed. A matching of an interior solution to the unique exterior
vacuum solution is done using directly the Einstein equations. The structure as well as several physical
properties and characteristics of traversable wormholes due to the effects of the cosmological term are studied.
Interesting equations appear in the process of matching. For instance, one finds that for asymptotically flat and
anti—de Sitter spacetimes the surface tangential pregsofahe thin shell, at the boundary of the interior and
exterior solutions, is always strictly positive, whereas for de Sitter spacetime it can take either sign as one
would expect, being negativigension for relatively highA and high wormhole radius, positive for relatively
high mass and small wormhole radius, and zero in between. Finally, some specific solutioAs wiked on
the Morris-Thorne solutions, are provided.
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I. REVIEW AND INTRODUCTION A. The beginning

It is true that Wheelef3], before the work of Morris and

It has now been 15 years since traversable wormholdhorne [1], had seen wormholes, such as Reissner-
theory started in earnest from the work of Morris and ThorngNordstran or Kerr wormholes, as objects of the quantum
[1]. It was first introduced as a tool for teaching generalfoam connecting different regions of spacetime and operat-
relativity, as well as an attempt to attract young students intdg at the Planck scale, which were transformed later into
the field, for instance those who had re@ontact a novel by ~ Euclidean wormholes by Hawkinig] and others, but these
Carl Sagan that uses a wormhole to shortcut a large astrdVheeler wormholes were not traversable, one could not
nomical distance’ but it has rap|d|y Spread into severafross them from one side to the other and baCk, and further-
branches. These developments culminated with the publicdlre they would, in principle, develop some type of singu-
tion of the bookLorentzian Wormholes: From Einstein to larity [5]. Having been a student of Wheeler, and having
Hawking by Visser[2], where a review on the subject up to further ' learned through Wheeler"s' mtgractlon with
1995, as well as new ideas, are developed and hinted at. It f€!'dovich on the trace energy conditidwhich statesp
our intention in this Introduction to do a brief review on the =3p, with p being the energy density aquthe pressure of

subject of wormholes. The subject has grown substantiall)};;le I:IUIdr 0?1 C'[tg 7r]es1,:[hfr?nm)etthattr? nre\:\%%/h (;]oind|tt|%nsntal\r/le rcr)in
and it is now almost out of control. We will focus on the axy grou . 1horne togethe s stude orns

: , . ; [1] understood that wormholes, with two mouths and a
work developed gfter y|ssers b.OOk was pUD.“Sr( st .Of throat, might be objects of nature, as stars and black holes
the references prior to its releasing are jnjaying attention

he i hat b hed h di are. Indeed, it is a basic fact for the construction of travers-
to the issues that branched out[al, such as energy condi- o6 \wormholes that the null energy condition, the weakest
tions, wormhole construction, stability, time machines, andof the conditions. has to be violated.

astrophysical signatures.
B. Energy conditions

The weak energy condition says that the energy density of
*Electronic address: lemos@physics.columbia.edu any system at any point of spacetime for any timelike ob-
Electronic address: flobo@cosmo.fis.fc.ul.pt server is positivein the frame of the matter this amounts to
*Present address: Instituto désien, Universidade Federal do p>0 andp-+p=0), and when the observer moves at the
Rio de Janeiro, CEP 21945-970, Rio de Janeiro, Brazil. Electronispeed of the light it has a well defined limit, called the null
address: quinet@hotmail.com energy condition g+ p=0). The weak and null energy con-
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ditions are the weakest of the energy conditidtise null D. Further wormhole construction

being even weaker than the weatheir violation signals that  rayersable wormhole theory achieved the end of its first
the other energy conditions are also violated. In Hawkingstage after the writing of the monograph on the subject by
and Ellis’ book[8] the weak energy condition is considered avjsser in 1995[2]. This monograph is fairly complete on
physically reasonable energy condition that at least all clascitations, so we refer the reader to it for a bibliographic
sical systems should obey. Afterwards it was found that itsearch up to 1995. We refer here to some developments af-
could be violated for quantum systems, such as in the Caerwards, quoting older references when appropriate.

simir effect and Hawking evaporatiofsee[9] for a short Further wormhole construction in general relativity.
review). It was further found that for quantum systems in  Visser led the way through several works. Indeed, Visser
classical gravitational backgrounds the weak or null energy24] constructed wormholes with polyhedrical symmetry in
conditions could only be violated in small amounts, and al989, generalized a suggestion of Roman for a configuration
violation at a given time through the appearance of a negawith two wormholes[1] into a Roman rind25], started a
tive energy state would be overcompensated for by the agtudy on generic dynamical traversable wormhole throats
pearance of a positive energy state soon after. This idea gal@6] in 1997, found classically consistent solutions with sca-
rise to the averaged energy conditid®], and to the quan- lar fields [14] in 1999, and also fouqd self-QuaI solgt|0ns
tum inequalities which, being intermediate between thd 27]. C_)ther,authors have also made interesting studies. Be-
pointwise energy conditions and the averaged energy cond(ore Visser's book we can quote the paper by Frolov and
tions, limit the magnitude of the negative energy vioIationsNOV'kOV’ where they mix wormhole and black hole physics

and the time for which they are allowed to exist, yielding [28]. After the book, particularly interesting wormholes with

information on the distribution of the negative energy densitytoro'dal symmetry were found by Gorlea-Dias [29],

. . . . wormhole solutions inside cosmic strings were found by
in a finite neighborhoodl11-13. It seems that the situation Clement[30] and Aros and Zamorari@1], wormholes sup-

has changed drastically. It has been now shown that eve orted by strings by Schein, Aichelburg and IstEag], ro-
classical systems, such as those built from scalar fields no 4ting wormholes were four;d by Td&3] consistent,solu-
minimally coupled to gravity, violate all the energy condi- tjong of the Einstein—Yang-Mills theory,in connection with
tions [14] (see alsd15] for other violations of the energy primordial wormhole formation were found if84], theo-
conditions. Thus, gradually the weak and null energy con-rems for the impossibility of the existence of wormholes in
ditions, and with it the other energy Conditions, m|ght besome Einstein-scalar theories were discussed by[%

losing their status of a kind of law. wormholes with stress-energy tensors of massless neutrinos
and other massless fields were discussed by Krashk@ly
C. Wormhole construction: A synthesis wormholes made of a crossflow of dust null streams were

fdiscussed by Hayward37] and Gergely[38], and self-

Surely, this has had implications on the construction o : ) .
. . o . consistent charged solutions were found by Bronnikov and
wormholes. First, in the original papdr], Morris and Grinyok [39]

Thomne constructed wormholes by hand, that is, one gives the Wormhole construction with arbitrarily small violations

geometry first, which was chosen as spherically symmetricof the energy conditions.

and then manufactures the exotic matter accordingly. The ~,a of the main areas in wormhole research is to try to
e_ngineer_ing work was left to an absurdly advanced civiliza-3,,4id as much as possible the violation of the null energy
tion, which could manufacture such matter and construcongition. For static wormholes the null energy condition is
these wormholes. Then, once it was understood that quantufiolated[1,2]. Several attempts have been made somehow to
effects should enter in the stress-energy tensor, a selbyercome this problem: Morris and Thorne had already tried
consistent wormhole solution of semiclassical gravity waso minimize the violating region in the original papEt],
found [16], presumably obeying the quantum inequalities.Visser [24] found solutions where observers can pass the
These quantum inequalities when applied to wormhole gethroat without interacting with the exotic matter, which was
ometries imply that the exotic matter is confined to an ex-pushed to the corners, and Kuhfit{igO] found that the re-
tremely thin band of size only slightly larger than the Planckgion made of exotic matter can be made arbitrarily small. For
length, in principle preventing traversabilifyl2]. Finally — dynamic wormholes, the violation of the weak energy con-
with the realization that nonminimal scalar fields violate thedition can be avoided, but the null energy condition, more
weak energy condition, a set of self-consistent classicaprecisely the averaged null energy condition, is not preserved
wormholes was founfl7]. It is fair to say that, though out- [26,41,43, although in[43] it has been found that the quan-
side this mainstream, classical wormholes were found by Eltity of violating matter can be made arbitrarily small, a result
lis back in 1973[18], and related self-consistent solutions in line with [40] for static wormholes.

were found by Bronnikov in 197819], Kodama in 1978 Wormhole construction with a cosmological constant
[20], and Clenent in 1981[21], these papers having been  Some papers have added a cosmological constant to the
written much before the wormhole boom originated fromwormhole construction. Kinj44] found thin-shell solutions
Morris and Thorne's work1] (se€[22] for a short account of in the spirit of Visser[2], Roman[45] found a wormhole
these previous solutionsA self-consistent Ellis wormhole solution inflating in time to test whether one could evade the
was found again by Harri3] by solving, through an exotic violation of the energy conditions, Delgaty and Maj#6]
scalar field, an exercise for students posefilin looked for new wormhole solutions with, and DeBenedec-
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tis and Dag47] found a general class with a cosmological [71]; one needs a quantum gravity, as has been foreseen
constant. Here, we will further study wormholes in a spacesometime before by Thorf&2].
time with a cosmological constant, as will be detailed below.

Wormhole construction in other theories of gravitation. G. Towards a unified view: From stars to wormholes

In alternative theories to general relativity, wormhole so- There is now a growing consensus that wormholes are in
lutions have been worked out. In higher dimensions solution

have been found by Chodos and Detwefldg], Clement %he same chain of stars and black holes. For instance,
[49], and DeBenedictis and D&S0], in Brans-Di'cke theory Gonzdez-Dias[29] understood that an enormous pressure on

by Nandi and collaborator1], in Kaluza-Klein theory by the center ultimately meant a negative energy_density to open
Shen and collaborator§52], in Einstein-Gauss-Bonnet UP the tunnel, DeBenedectis and [ag] mention that the
theory by Kar[53], Anchordoqui and Bergliaffa found a Stress-energy supporting the structure consists _01_‘ an aniso-
wormhole solution in a brane world scenafig4] further ~ tropic brown dwarf “star,” and the wormhole joining one
examined by Barcéland Vissef55], and Koyama, Hayward Friedmann-Robertson-Walker universe with Minkowski
and Kim[56] examined a two-dimensional dilatonic theory. spacetime or joining two Friedmann-Robertson-Walker uni-
verseq 26] could be interpreted, after further matchings, as a
E. Stability wormhole joining a collapsing(or expanding star to
. i ) Minkowski spacetime or a wormhole joining two dynamical
To know the stability of an object against several types Olsiars respectively. It has also been recognized, and empha-
perturbatiqn is always an important issue. Wormholes are nQfj; a4 by Hayward73], that wormholes and black holes can
an exception. Not many works though are dedicated t0 thgg reated in a unified way, the black hole being described by
stability theory of wormholes, although the whole formalism 5 1, outer trapped surface, and the wormhole by a timelike
developed for relativistic stars and black holes could b&ter trapped surface, this surface being the throat where
readily used in wormholes. Viss¢s7], Poisson and Visser incoming null rays start to diverget2,73. Thus, it seems
[58] and Ishak and Lakgs9] studied the stability of worm-  yhere is"a continuum of objects from stars to wormholes
holes made of thin shells and found, in the parameter spagg,sqing through black holes, where stars are made of normal
(PI%) X (throat radius/mass), wher® and P are, respec- matter hlack holes of vacuum, and wormholes of exotic mat-

tively, the surface energy densi_ty and surface tangential Pre$ar. Although not so appealing perhaps, wormholes could be
sure, those wormholes for which there are stable solutiong.gjied exotic stars.

For the Ellis drainhol¢18], Armendaiz-Picon [60] finds that
it is stable against linear perturbations, whereas Shinkai and

Hayward[61] find this same class unstable to nonlinear per- H. Astrophysical signatures

turbations. Bronnikov and Grinyok39,62 found that the Stars are common for everyone to see, black holes also
consistent wormholes of Barceland Visser[17] are un- inhabit the universe in billions, so one might tentatively

stable. guess that wormholes, formed or constructed one way or

another, can also appear in large amounts. If they inhabit the

E. Wormholes as time machines cosmological space, they will produce microlensing effects

) , ) on point sources at noncosmological distaniced, as well
An important side effect of wormholes is that they can be,g 4t cosmological distances; in this case gamma-ray bursts
converted into time machines, by performing a sufficient deq,1q be the objects microlensgeb, 76, If peculiarly large,

lay to the time of one mouth in relation to the other. This can,ormnoles will produce macrolensing effe¢&7].
be done either by the special relativistic twin paradox

method[63] or by the general relativistic redshift wag4].
The importance of wormholes in the study of time machines
is that they provide a noneternal time machine, where closed In this paper we extend the Morris-Thorne wormhole so-
timelike curves appear to the future of some hypersurfacdutions[1] by including a cosmological constant Morris-

the chronology horizoia special case of a Cauchy horizon Thorne wormholes, witth =0, have two asymptotically flat
which is generated in a compact region in this case. Sinceegions. By adding a positive cosmological constant; 0,

time travel to the past is in general unwelcome, it is possibléhe wormholes have two asymptotically de Sitter regions,
to test whether classical or semiclassical effects will destroyand by adding a negative cosmological constar; 0, the

the time machine. It is found that classically it can be easilywormholes have two asymptotically anti—de Sitter regions.
stabilized[2,63]. Semiclassically, there are calculations thatThere are a number of reasons to study wormholes with ge-
favor the destructiofi65,66], leading to chronology protec- neric A that a technologically absurdly advanced civilization
tion [66], and others that maintain the machifi2s,67. might construct. ForA>0, we know that an inflationary
Other simpler systems that simulate a wormhole, such aghase of the ultra-early universe demands it, and moreover,
Misner spacetime which is a species of two-dimensionafrom recent astronomical observations, it seems that we live
wormhole, have been studied more thoroughly, with no connow in a world withA>0. On the other hand\ <O is the
clusive answer. For Misner spacetime the debate still goegacuum state for extended theories of gravitation such as
on, favoring chronology protectiof68], disfavoring it[69], supergravity and superstring theories, and, in addition, even
and favoring it agairf70]. The upshot is that semiclassical within general relativity, a negative cosmological constant
calculations will not settle the issue of chronology protectionpermits solutions of black holes with horizons with topology

I. Aim of this paper
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different from the usual sphericgl’8,79 (see[80] for a  where Ct,r,0,¢) are the usual spacetime spherical coordi-
review), which could be turned into wormhole solutions by nates, andb(r) andb(r) are arbitrary functions of the radial
adding some exotic matter, although we do not attempt itoordinater. ®(r) is designated the redshift function, for it
here. . . is related to the gravitational redshift, ab@r) denotes the

We follow the spirit of the Morris and Thorne paplerl.  shape function, because as can be shown by embedding dia-
We analyze distributions of matter similar f&] but now grams, it determines the shape of the wormhdlg The

with genericA, i.e., we analyze spherically symmetric and 5 qia| coordinate has a range that increases from a minimum
static traversable Morris-Thorne wormholes in the presencg e air corresponding to the wormhole throat, to a maxi-
0| 1

of a cosmological constant. The more complicated issue of, .. o corresponding to the mouth. At, one has to join

the formalism of junction conditions, that Morris and Thorne . . X
so well evaded1], is here treated through the direct use ofsmooth_ly this spherlcal _volume to another s_pherlcal volume
opy withr ranging again front, to a. In addition, one has

the Einstein field equation, and the matter content of th h . h h | ime f "
thin-shell separating the wormhole from the exterior spacel'€" [0 Join each copy to the external spacetime feotn

time is found. In this way, an equation connecting the radiaPS Will be done. _ o _
tension at the mouth with the tangential surface pressure of The mathematical analysis and the physical interpretation

the thin-shell is derived. The structure as well as severayvill be simplified using a set of orthonormal basis vectors.
physical properties and characteristics of traversable wormIhese may be interpreted as the proper reference frame of a
holes due to the effects of the cosmological term are studie@€t of observers who remain at rest in the coordinate system
We find that for asymptotically flat and anti—de Sitter space{ct,r,,¢), with (r,6,¢) fixed. Denote the basis vectors in
times the surface tangential pressieof the thin-shell is the coordinate system &g, €, €, ande,. Then, using the
always strictly positive, whereas for de Sitter spacetime ifollowing transformationg;=A";e,, with

can take either sign as one could expect, being negétwve

sion) for relatively highA and high wormhole radius, posi- A”;L:diag{e*q’,(l—b/r)l’z,rfl,(r sing) 1], 2)

tive for relatively high mass and small wormhole radius, and

zero in between. Finally, some specific solutions wih  \here the notation means that the nondiagonal terms of the
basgd on the Morrl_s—Thorne solutions, are provided. In prépatrix are zero, one finds

senting these solutions we dwell mostly on the cAseO,

and A>0, and comment briefly olh <0. The plan of the "

paper is as follows: In Sec. Il we present the Einstein field &=¢€ &

equation for a wormhole metric and perform the junction to

an external asymptotically Minkowski, de Sitter, or anti—de e=(1-b/r)'%

Sitter spacetime. In Sec. Il we give some wormhole geom- 3
etries, analogous tfdl] havingA =0, A>0 andA <0, and e;=r le,

study some of their properties. In Sec. IV we conclude.
e;=(rsing) 'e,.
1. EINSTEIN FIELD EQUATION FOR WORMHOLES

WITH A GENERIC COSMOLOGICAL CONSTANT A . . . .
In this basis the metric components assume their

A. The Einstein field equation with genericA: Minkowskian form, given by,
Setting the nomenclature

To set the nomenclature, the Einstein field equation with a 9.,= m,;=diag —1,1,1,3. (4)
cosmological constant is given, in a coordinate basis, by
Gt Agw=87-ch‘4T in which G, is the Einstein In the orthonormal reference frame, the Einstein field equa-
tensor, given by ,,,=R,,,— %gwR, R, is the Ricci tensor, tion with a generic cosmological constant is given by
which is defined as a contraction of the Riemdaoncurva-
ture) tensor,R,,=R“,,,, andR is the scalar curvature de- 87G
fined as a contraction of the Ricci tensB+=R;,. The Rie- Gt An=—7"Tu. (5
mann tensor is a function of the second order derivatives of c
the metric componentg,,, . T,, is the stress-energy tensor

v

of the matter, and\ the cosmological constaf81]. The Einstein tensor, given in the orthonormal reference
frame byG,,;= R;L;—%Rg/;;, yields for the metrig1) the
1. The spacetime metric following nonzero components:
We will be interested in the spacetime metric, represent-
ing a spherically symmetric and static wormhole, given by b’
[1] Gii= X (6)
2
— 2PNy
ds?=—e?*(c2dt 1b()ir bl
. Gii=— 5 +2({1-—|—, (7)
+r2(d6>+sirf6d¢p?) (1) r rpr

064004-4



MORRIS-THORNE WORMHOLES WITH A COSMOLOGICA. .. PHYSICAL REVIEW D 68, 064004 (2003

I UL | P L il A Ti=p(r)c?, Ti=—7(r),
Gip=\1=7)| 2"+ (@)= 5
b'r—b @ ® Tin=p(n), Taa=p(r), 10
2r¥r—b) |

in which p(r) is the energy density;(r) is the radial ten-
Gi=G (9) sion, with 7(r)= —p,(r), i.e., it is the negative of the radial
bd 66 . . .
pressure, an@(r) is the pressure measured in the tangential
where a prime denotes a derivative with respect to the radialirections, orthogonal to the radial directiofi,; may in-
coordinater. clude surface quantities as we will see.

2. The stress-energy tensor 3. The cosmological constant and the total stress-energy tensor

The Elnstelr_1 field equation requires that the Einstein ten- To obtain a physical interpretation of the cosmological
sor be proportional to the stress-energy tensor. In the orthod

normal basis the stress-enerav tendbr-  must have an onstant, one may write the Einstein field equation in the
gy tensor , following manner:G”szGC"‘(T,;ﬁTSfC)), in which

identical algebraic structure as the Einstein tensor compo- (vac) . 34 _
nents,G;;, i.e., Eqs.(6)—(9). Therefore, the only nonzero T,; = —0.;(Ac"/(87G)) may be interpreted as the stress-
components off ,; areTi;, Ti;, Ty, andT,;,. These are  energy tensor associated with the vacuum, and in the ortho-
given an immediate physical interpretation, normal reference frame is given by
|
T2 diag Ac*/(87G),~ Ac¥/(87G),— Ac¥/(87G),— Ac/(87G)]. (11)
|

We see it is thus possible to adopt the viewpoint that the 2 b
cosmological term is an integral part of the stress-energy(r)= 87G —2—A), (16)
tensor, being considered as a fluid. Accordingly, we can de- T\
fine the total stress-energy tensoy,;, as

- = ‘e 211 b} &’ A 1

Ta=Tut T w2 7 ga6|s (A 7
such thatG;L;=87-ch‘4?;L;. Thus, the components of the ct b b'r—b
total stress-energy tensor of the wormhagi¢r), =(r) and r= (1— —) Q"+ (D) ——— D’
to energy | mhakr), 7(r) PI=5.G r =i
p(r), are given by the following functions:

b'r—b P’
= o rs(1—bl/r
p(D)=p(N)+ g5 A, (13

By taking the derivative of Eq(17) with respect to the
(14) radial coordinater, and eliminating’ and®”, given in Eq.
(16) and Eq.(18), respectively, we obtain the following
equation:

4

Hr)=r(r)+ SC%A,

4

— Cc
p(r)=p(r)— —=A. (15
G T'=(pc2—r)c1>'—§(p+7). (19

This viewpoint may be interesting to adopt in some cases.
Equation(19) is the relativistic Euler equation, or the hydro-
4. The Einstein equations static equation for equilibrium for the material threading the

We are interested in matching the interior solution, Whosewormhole, and can also be obtained using the conservation

metric is given by Eq(1), to an exterior vacuum solution, Of the stress-energy tensof/”;=0, putting u=r. The
which will be considered below. Using E¢5) and equating conservation of the stress-energy tensor, in turn, can be de-
Egs. (6)=(8), with Eq. (10), we obtain the following set of duced from the Bianchi identities, which are equivalent to
equations: G*".5=0.
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5. Method for solving the Einstein equations

r dr
The conventional approach to solving the Einstein equa- I(r)= fr W (24)
tions would be to assume a specific and plausible type of °
matter or fields for the source of the stress-energy tensopnq for the lower parz<0 as
One would then derive equations of state for the radial ten-

sion and the tangential pressure, as functions of the energy r dr
density. These equations of state, together with the three field [(r)y=-— f —. (25
equations, would provide the geometry of the spacetime ro [1=b(r)/r]

given in terms of the metricg,,,, as we would have five

equations for five unknown functions, i.&(r), ®(r), p, 7 :
. ; : . _ the wormhole mouth. One can also verify that the shape
andp. Morris and Thorne’s approadi], which will be fol tfunction,b(r), is positive in order that/r/b—1 is real. This

lowed in this paper, differs as they first fixed a convenienf < will ol ! tant role f truct i
geometry for a wormhole solution and then derived the mat;act Wil piay an important role for constructing specific So-

ter distribution for the respective solutioisee[47] for a lutions.
careful analysis of the various approaches

The maximum upper limit of integration s, the radius of

2. Exotic matter

Following [1] closely we will see that the wormhole
needs exotic matter, i.e., matter that does not obey the null
energy condition, and thus does not obey the weak or any
1. The mathematics of embedding other energy condition. The null energy condition applied to

We can use embedding diagrams to represent a wormhotbe matter considered in Eqd.3), (14) is pc®>—7>0. Thus
and extract some useful information for the choice of thea good way to define exoticity is through the parameter
shape functionb(r), which will be used in the specific so- defined ag1] £¢=(7—pc?)/|pc?. This parametek is di-
lutions considered below. Due to the spherically symmetrianensionless, and when positive signals exotic matter. Using
nature of the problem, one may consider an equatorial slicegs. (16), (17) one finds
0=/2, without loss of generality. The respective line ele-

B. Construction of a wormhole with generic A.
I: General comments

ment, considering a fixed moment of tintes const, is given ?—;cz b/r—b’—2r(1—b/r)®’ 26
» Tle?l  b'-Ar
2
d2= r +r2d 2. (20) To be a solution of a wormhole, one needs to impose that the
1-b(r)/r throat flares out. Mathematically, this flaring-out condition

entails that the inverse of the embedding functi¢n) must
To visualize this slice, one embeds this metric into threesatisfy d?r/dz?>0 near the throatr,. Differentiating

dimensional Euclidean space, whose metric can be written ifiy/dz=+[r/b(r)—1]*?> with respect to zz we have
cylindrical coordinates, r( ¢,2z), as d?r/dz%=(b—b’'r)/2b*>0. Combining this with Eq(26),
the exoticity function takes the form
ds?=dZ2+dr?+r2d¢?. (22)
(D/

—_— 2
b’ —Ar?| @9

Now, in the three-dimensional Euclidean space the embed- 3
ded surface has equatiasz(r), and thus the metric of the

surface can be written as,

2b? d’r ) ( b
= — — r —_——
rlb’—Ar? dz?

r

Considering the finite character of and therefore ob’,
and the fact that (£ b/r)®’—0 at the throat, we have the

2
ds?=|1+ o dr+r2d¢?. (22)  following relationship:
r
. | . 7o~ poC’

Comparing Eq(22) with Eqg. (20) we have the equation for E(ry)= ——=——>0. (28
the embedding surface, given by |poc?|

dz r —12 Thus matter at the throat is exofisee[1,2,26 for a detailed

— =t —— discussio

ar = b 1) (23 n

C. Construction of a wormhole with generic A.

To be a solution of a wormhole, the geometry has a mini- _ _ _ e »
II: Interior and exterior solutions, and junction conditions

mum radius,r=b(r)=r,, denoted as the throat, at which
the embedded surface is vertical, igdkz/dr—cc. Outside the We will distinguish the interior cosmological constant,
wormhole, far from the mouth, space can be asymptotically\,;, from the exterior oneA .. Equationg16)—(18) dem-
flat, de Sitter, or anti—de Sitter. onstrate that once the geometry is fixed by the redshift func-
One can define the proper radial distance for the uppetion ®(r), and the shape functidm(r), the inclusion of the
part of the wormhole>0 as cosmological constant,; will shift the respective values of
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p(r), 7(r) andp(r) and might help in minimizing the vio- b b\d’
lation of the energy conditions. 0= r_3 — 2( 1- F)T — Aexts (34
1. Interior solution of the Einstein equations
with generic Ay b b'r—b
, o . o : , =(1——) P+ (D) D’
To find an interior solution of the Einstein equations with r 2r2(1—blr)
genericA, we combine the analysis developed in the previ-
ous sections, taking into account the notation that repre- b'r—b @’
sents the cosmological constant associated with the interior B 2r3(1—bir) 2 Aext- (39
solution. The respective Einstein equations provide the fol-
lowing relationships: The metric quantities should carry a subscrigt but again

we have not included it so as to not overload the notation.

3 c? (b’ Solving the system of differential equations of E¢33)—
p(r)= 8+G r_z_Aint : (29 (35), the exterior vacuum solution with a cosmological con-
stant is given by
c* | b b\ @’
- 2GM A
= gaG| 5 ( _F)T_Aim* 30 dsz=—(1— . ——“‘XtrZ)cht2
c?r 3
c? b b'r—b dr?
p(r)= (1——) P (D) D’ + +r2(d6*+sirfod ¢?).
8mwG r 2r2(1—blr) 2GM  Agy
- ——r
2
br—b @' 31 crr 3
23(1—biry r ] M (36)

The metric quantities should carry a subscript but we do This metric is the unique solution to the vacuum Einstein
q y iHP equations for a static and spherically symmetric spacetime

not include It in arder 1o not overload the notation. It is of with a generic cosmological constant. The denomination
interest to find an expression for the radial tension at the

' given to it depends on the sign df,,;. The Schwarzschild
Trro‘]’jltt.hgrtoer:siiﬂ.(i:sg()) one finds that at the throgb(r,) solution, which is a particular case, is obtained by setting
—lo

A= 0. In the presence of a positive cosmological constant,

4 (4 Aey>0, the solution is designated by the Schwarzschild—de
(ro) = o Z A (32)  Sitter metric. ForA¢,<0, we have the Schwarzschild—anti
(o} 871G 2 int |- . . . .. _
KA de Sitter metric. ForA #0, note that this metric is not as

ymptotically flat ag —o; it is either asymptotically de Sitter
Thus the radial tension at the throat is positive for worm-(A_,>0), or asymptotically anti—de SitteA(,,<0). How-
holes whose structure yields,,<1/r2; this includes worm-  ever, if A o is extremely small, there is a range of the radial
holes with negative and zero cosmological constant. The racoordinate, i.e., /A o> GM/c?, for which the metric is
dial tension is negative, i.e., it is a pressure, for wormholesearly flat. For values af below this range, the effect of the
with the cosmological constant obeying,> 1/r§. The total massM dominates, whereas for values above this range, the

radial tensionz(r ) = 7(ro) + (c*/87G) A, is always posi-  €ffect of the cosmological term dominates, as for very large

tive, of course. values ofr the large-scale curvature of the spacetime must be
taken into account.
2. Exterior vacuum solution of the Einstein equations with a. The Schwarzschild spacetime,,—=0. Equation(36)
generic A g with A= 0 is the Schwarzschild solution. The full vacuum

. . . .solution represents a black hole in an asymptotically flat
The spacetime geometry for a vacuum exterior region is . i 2N g
. . S spacetime. The factdi(r)=[1—(2GM/c“r)] is zero at
simply determined considering a null stress-energy tensor,
T,,=0, ie, p(r)=_r(r)=p(r)=0. Not_e thatA_ext repre- 2GM
sents the cosmological constant associated with the exterior ==, (37)

solution. In the most general case, the exterior radial coordi- c

nater should be different from the interior orre Here we he black hol hori . h hol i
ut them equal; both are denoted hysince it simplifies the t. € black hole event orizon. Since the wormnole matter wi
b ’ fill the region up to a radiua larger tharr, this radius does

junction and it gives interestingly enough results. The Elr]_not enter into the problem. It is important to have it in mind,

stein equations then reduce to since if after construction one finds that>a, then the ob-
ject constructed is a black hole rather than a wormhole.
0= — — Aoy, (33 b. The Schwarzschildle Sitter spacetime\ .,.>0. Equa-
tion (36) with A0 represents a black hole in asymptoti-
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cally de Sitter space. If €9A.,(GMc ?)2<1, the factor c. The Schwarzschiénti de Sitter spacetime ¢,<0.
f(r)=[1—(2GM/c?r) — (A3)r?] is zero at two positive For the Schwarzschild—-anti de Sitter metric, with,<0,

values ofr, corresponding to two real positive roots. Defin- the equationf (r)=[1—(2GM/c?r) + (| Ae,d/3)r?]=0 will
ing have only one real root, therefore implying the existence of
one horizon. If one defines

3c* v c* 4 13
T B N e Al
ex ext 8|Aext|G2M2
(38)
N \/ Vg
4 |18 2 X\ 1+ \[1+ ———— (45)
:(L \3/_1_ 1_C—, 9|AeerGZM2
8A o G2M? 9A G2M?
(39) ( 3C4 1/3
the solutions are given by | 8] A oy GZM?2

2GM A+B A-B / c?
c 9| A ¢y GZM?2

GM PR
fo=—0y (A+B). (41) then the solution is
c
_2GM
When A o, ( GM/c?)2<1, one gets p= (A+B). (47)
2
2GM| 4 [GMm 22 ,
= oA 22 (42) For |Aed(GM/c?)?<1 one obtains
c 3 c? 2
2GM 4 GM
= __|Aextl 5 (48)
3 c2

M= 2
[3 . GM [A oxt . c
r.= - .
¢ Aext c? 3

Once again this event horizon is avoided by filling the space
with exotic matter from the throat at, up to the mouth a4,
wherea>r in order that the wormhole is not a black hole.
d; Aey=0, the metric is reduced to the Schwarzschild solu-
tion. If r—o the metric tends to the anti—de Sitter solution

The smaller of the values, denoted by r,,, can be consid-

ered as the event horizon of the vacuum black hole solutio
but since the wormhole matter will fill the region up to a
radiusa superior tharr, this radius does not enter into the

problem. The larger value, denoted byr., can be re- A e

garded as the position of the cosmological event horizon of ds?=—|1+ irz)czdt2

the de Sitter spacetime. Keepig,, constant, but increasing 3

M, r=ry will increase andr=r. will decrease. If dr2

9A o (GMc™?)2=1, both horizons coincide and are situated + —————+r3(d@>+sifod¢?). (49
at r=r,=r,=3GM/c?>. Thus we will consider 1+ [ Aexd r2

9A(GMc ?)2<1. Particular cases ar&.,=0 yielding 3

the Schwarzschild solution, a =0 yielding the de Sitter _ _ )
solution. Wherr — the metric tends to the de Sitter space-FO [Aex—0, the anti—de Sitter metric tends to the

time Minkowskian spacetime.
2 3. Junction conditions in wormholes with generid ¢,
A dr
ds?=— [ 1- —22| c2dt?+ ———— _ .
- 3 A et To match the interior to the exterior, one needs to apply
1- 3 2) the junction conditions that follow from the theory of general

relativity. One of the conditions imposes the continuity of the

+r2(d6?+sirf6d¢?). (44)  metric componentsy,,,, across a surface, i.e., g,,(nols
=0,.(exols- This condition is not sufficient to join different

For A— 0, the de Sitter metric tends to the Minkowskian spacetimes. One formalism of matching, that leads to no er-

spacetime. In the coordinates adopted above, the metric @brs in the calculation, uses the extrinsic curvaturesgor

the de Sitter spacetime will be singulamif (3/A )2 but  second fundamental form of the surfaSethe first funda-

this is a mere coordinate singularity signaling the presence ahental form being the metric o) see, e.9.[82]. However,

a cosmological event horizon. for spacetimes with a good deal of symmetry, such as spheri-
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cal symmetry, one can use directly the field equations tdNow, second derivatives in the metric are related to the Ein-

make the match, see e.g83] (see also Taups4]). We fol-  stein tensoiG,,,, or since we are working with hat quanti-
low this latter approach. Indeed, due to the high symmetriesies, toG,;. But G; is proportional to the stress-energy
of the solution, we can use the Einstein equations, B~  tensorT ;. Thus, something in the stress-energy tensor has

(18), to determine the energy density and stresses of the sute reflect this discontinuity. Indeed, at the bound&r¥f ,,; is
face S necessary to have a match between the interior angroportional to a Diracs function, and we can writd ;;
exterior. If there are no surface stress-energy terms at thgt;ﬁ(f_a)’ wheret =/g,,r means the proper distance

surfacesS, the junction is called a boundary surface. If, on thethrough the thin-shell. To find:- one then use$fG”;d?
other hand, surface stress-energy terms are present, the junc- m ©

tion is called a thin-shell. =(87G/ch) [ t;;8(r—a)dr, where [© means an infini-
a. Matching of the metricAs was mentioned above, the tesimalintegral through the shell. Using the property ofdhe

unique vacuum static and spherically symmetric solution, irfunction 8(f(x))=[1/f'(x)|]8(x), and [g(x)8(x—xXo)

the presence of a nonvanishing cosmological constant, is9(Xo), one finds

given by Eq.(36). A wormhole with finite dimensions, in 4

which the matter distribution extends from the throat, tM:C_rGMd; (55)

=r,, to a finite distance =a, obeys the condition that the e 8mG) - THT

metric is continuous. Due to the spherical symmetry the

components 5, andg(ﬁd) are already continuous, and so one Since the shell is infinitesimally thin in the radial direction

is left with imposing the continuity o), andg,, , there is no radial pressure, thus we are left with a surface
energy tern,, and a surface tangential press@te
tt(int) = Gtt(ext) » (50) First we calculate the surface energy den3ityFrom Eq.
(6) we see thats;; only depends on first derivatives of the
Grr (int) = Grr (ext) » (5D metric, so that when integrated through the shell it will give

metric functions only, which by definition are continuous.
Thus, since the integral gives the value of the metric on the
exterior side b*, say minus the value of the metric on the
dinterior side p7), it gives zero, and one finds

atr=a, with gy(iny andg;, (iny being the metric components
for the interior region ar =a, and gy(exy and gy (exy) the
exterior metric components for the vacuum solutionr at
=a. For the sake of consistency in the notation this coul
have been done in the orthonormal frame with the hat quan- S =0. (56)
tities g,;, butin this case it is more direct to do with coor-
dinate frame quantities. One can start the analysis by consid- Now we find the surface tangential press@eFrom Eq.
ering two general solutions of E@l), an interior solution (8) we see thaG;; has an important terrhl— (b/r)]d".
and an exterior solution matched at a surfé&&eThe conti-  The other terms depend at most on the first derivative and as
nuity of the metric then gives genericalljy;«(a) = P () before do no contribute to the integral. Thus, in this case Eq.
and b (a) =be,(@). If one now uses, Eqql), (36), (50)  (55) gives 87G/c?>P=.1—b(a)/ad’'". Now, ®’' =0
and (51, one finds then e?**@=[1-2GM/(c’a) by assumption, and ®'*=[GM/(c2a?)— Aa/3]/[1
— A oy@?/3] and [1-b(a)/a]=[1-2GM/(c?a)  —Db(a)/a]. Thus,
— A ox@%13] which can be simplified to

c* GM/(c?a?)— Ag@l3

1 2GM A P=
®(a)=3In| 1-——— ;Xtaz), (52) 87Ga  \1-b(a)/a
c-a
or more explicitly,
2GM  Agy 4
b(a)=—5—+ 75" (53 GM  Agy
c 3 2V Dex,
ct c’a 3
From Eq.(53), one deduces that the mass of the wormhole is P= ) (57)
given by 8mGa 2GM A,
CZ A 1- 5 - 3 a2
_ _ ext 3 cca
M_ZG(b(a) 3 a). (54)

P is always positive for the Schwarzschild and the

b. Matching of the equations I: The surface pressi¥e  Schwarzschild—anti de Sitter spacetime, i£q~<0. The
are going to consider the case where static interior observeschwarzschild—de Sitter spacetime, >0, has to be ana-
measure zero tidal forces, i.@;,=const,®;,=0. Thisis, lyzed more carefully. In Fig. 1, we plot in a graph
of course, a particular choice which simplifies the analysis9A ¢(GM/c?)?x2GM/(c?a) the regions wher® is nega-
As we have seen, the metric is continuous through the sutive, zero or positive. For highh ¢ (GMc™2)2 (either A oy
faceS However, their first and second derivatives might notbig or M big) and at low ZM/(c?a) (eitherM small ora
be. Since the metric is static and spherically symmetric théig), one needs a surface tension to support the structure. In
only derivatives that one needs to worry about are radialthe other case one needs a surface pressure. This is expected
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GM  Aey 5
) r2 1 c’a 3
=2 .
P(ro)  aAr 1—p'(r,) 2GM Aoy
1— - —a?
c%a 3

(60)

One may find numerical estimates, considering various
choices of the shape functiom(r), which will be done
while considering specific solutions of traversable worm-
holes.

c. Matching of the equations Il: The radial pressume®
construct specific solutions of wormholes with generic cos-
mological constant, one needs to know how the radial ten-
sion behaves across the junction bound&ryhe analysis is

FIG. 1. The regions wher® is negative and positive in a plot of SiMPplified if we consider two general solutions of Efj), an
9A . (GM/c?)? as a function of the inverse of the relative size of interior solution and an exterior solution matched at a sur-
the wormhole, i.e., M/c?a (in the figure we have used geometri- face,S The radial component of the Einstein equations, Eq.

cal unitsG=1=c) are given. Inside the solid line is the region of (17), provides

solutions. To the left of the dashed lifeis a negative pressure, i.e.,

a tension, to the righP is a positive quantity, i.e., is a pressure, see bint_ 8wG Bint| Pint

text for more details. e Tint(F) + Ajnet 2| 1 R (61)
in the sense that for a positivé.,,; one has an expanding Dexy 87G Dext| Pext
external de Sitter spacetime.dfis big[and so M/(c?a) e Tod M)+ At 2| 1— ——|—.

small], the wormhole boundary is participating somehow in (62)

the expansion, so one needs a tension to hold it. For small

(2GM/c?a big), the gravity wins over the expansion and S0 Taking into account the continuity of the metric at the junc-
one needs a pressure to hold against collapse, a particuldon boundary one has obtained;,(a)=®.(a) and

case being the Schwarzschild casg~=0.
One can have a term of comparison for the surface tan=0. Using again the relation

gential pressuré at the thin-shell. Assuming that the thin-
shell has a width of approximatel{r, one can consider a
volumetric tangential pressure, orthogonal to the radial coor-

dinate, given by

bin(a) =bex(@). For simplicity, we are considerind; .(a)

GM A 2GM A
BLdn)=| S5 5 " / 1= ‘_emrz)’
c?r 3 c?r 3

and taking into account Eq57), we verify that Eqs(61),
(62) provide us with an equation which governs the behavior

P= AE (58 of the radial tension at the boundary, namely,
r
ct c* 2_
Tin @) + g—= Ain= Ted(@) T g—= Aext JPE @,
Taking into account Eq.31), we see that the tangentigl pres- 63)

sure at the mouth, with®; =0, is given by p(a)

=(c*/16wGa’)[b(a)—b’(a)a]. Estimates ofP may be

given in terms ofp(a), by defining the following ratio:

GM  Agy

cta 3

P a 1

It is also interesting to find the ratio {o(r,), the maximum

pressure, given by

where we have pute®®=.1-2GM/(c%a)— A a°/3.
Equation(63), although not new in its most generic fof,

is a beautiful equation that relates the radial tension at the
surface with the tangential pressure of the thin-shell. A par-
ticularly interesting case is wheR=0. In this situationM
=A% (3G), and®/,(a)=0. Since by our construc-
tion ®; (a)=0, @' is continuous across the surface and the
solution is reduced to a boundary surface. From(Eg) one
finds that the shape function at the junction is given by
b(a)=Ae@%. Thus, Eqg. (63 simplifies to, 7i(a)
+(cH8mG) Ajny= Tex(@) + (C*/87G) Ao If ONe considers

a matching of an interior solution of a wormhole with ge-
neric A, given by Eq.(1), to an exterior Schwarzschild so-
lution, with 7.,,=0 andA =0, we simply have the condi-
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future timelike infinity

future mull infinity future null infinity

past null infinity

past timelike infinity

FIG. 2. The spacetime diagram for the wormhole with,;

=0, i.e., a wormhole in an asymptotically Minkowski spacetime,
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tion that 7,,(a) + (c*/8wG) A;v=0 at the boundary surface.
Matching an interior solution to an  exterior
Schwarzschild—de Sitter or Schwarzschild—anti—de Sitter so-
lution, with 7,,=0 and A.#0, we have the relationship
Tint(@) + (C*/87G) A= (c*87G) A o at the boundary sur-
face. These solutions will be analyzed in the next sections.

D. Spacetime diagrams

We now draw the spacetime diagrams, i.e., the Carter-
Penrose diagrams, corresponding to wormholes in space-
times with A =0, Ag >0, andA <0. They are easy to
sketch once one knows the corresponding diagrams for the
solution with no wormhole, i.e., the Carter-Penrose diagrams
for Minkowski spacetime, de Sitter spacetime and anti—de
Sitter spacetim¢g8], respectively. Each point in the diagram
represents a sphere. Since the wormhole creates an extra
asymptotic region one has to duplicate the original diagram
through the throat. In Figs. 2—4 the diagrams for a wormhole

represented by two copies of the Minkowski diagram joined at thd @n asymptotically flat spacetinfe,=0, in an asymptoti-

throat.
future null infinity future null infinity
S %,
& Y,
s %,
4,
5% 0.
& %
r
9 a a o la a %
past null infinity past null infinity

FIG. 3. The spacetime diagram for the wormhole with,;

>0, i.e., a wormhole in an asymptotically de Sitter spacetime, with

an infinite number of copie®nly two are representgd

future timelike infinity  future timelike infinity
spacelike infinity a Ero a spacelike infinity
past timelike infinity past timelike infinity

FIG. 4. The spacetime diagram for the wormhole with,,

cally de Sitter spacetimd >0, and in an asymptotically
anti—de Sitter spacetimd <0, respectively, are drawn.
Note the duplication of the asymptotic regions.

Ill. SPECIFIC CONSTRUCTION OF WORMHOLES WITH
GENERIC A

We will give some simple examples of traversable worm-
holes similar to those constructed[it]. The difference from
the wormholes in that work is that the wormholes here in
general have an infinitesimal thin-shell with a tangential
pressureP+#0, and the exterior spacetime has a cosmologi-
cal constant. We discuss briefly the three cadges=0,
A0, andA <0.

A. Specific solutions of traversable wormholes withA,;=0
(asymptotically flat wormholes)

1. Matching to an exterior Schwarzschild solution, wit#P=0

Here we consider a matching of an interior solution with
an exterior Schwarzschild solutiorrg=0 and A.,=0),
and with the junction having zero tangential pressure,
=0. From Eq.(63) one has at the junction

C4

Tint( a‘) + 871G Aint: 0. (64)

Then, from Eq.(30) (with &' =0) one gets

¢t b(a)
- 8wG g3’

(65

Sinceb+#0, Eq.(65) is only satisfied ila—c. This is one of

<0, i.e., awormhole in an asymptotically anti—de Sitter spacetimethe cases considered by Morris and Thohg in which the
represented by two copies of the anti—de Sitter diagram joined awvormhole’s material extends from the throat all the way to

the throat.

infinity.
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2. Matching to an exterior Schwarzschild solution, wit#P# 0

PHYSICAL REVIEW D68, 064004 (2003

The final metric of the whole spacetime is given by Egs.

Matching the interior solution to an exterior Schwarzs-(72): (73), which are joined smoothly, as we have carefully

child solution (re,,=0 and A.,=0) but consideringP+ 0

provides some interesting results. The behavior of the radial

tension at the junction is given by E¢3) and taking into

account Eq.(53) one finds that the shape function at th

junction simply reduces td(a)=2GM/c?. We will next
consider various choices for the shape functiofr)), which
will give different wormhole solutions.

a. b(r)=(r.r)Y2 Consider the following functions:

(66)
(67)

O (r)=o,,

b(r)=(r,r)*?

worked out.
It is also interesting to briefly consider the traversability
conditions that the absurdly advanced civilization might re-

e quire to cross the wormhole from one mouth to the other and

back[1]. One finds that for an observer traversing the worm-
hole with a velocityp =0.01c, the wormhole has a throat
radius given byr,=500 km. One can choosg=500 km,

and assume that the traversal time done by the spaceship is
approximately one year. Then, one finds that the matter dis-
tribution extends from r, to a=4.74x10"®m~5

x 102 light years, witha being the size of the wormhole. It

is supposed that the space stations are parked there. One also
finds that the wormhole masshé=3.3x 10 kg, six orders

Wherero is the throat radius as before. USing the Einsteinof magnitude Superior to the Sun’s mass. One may also find

equations, Eqs29)—(31), we have

— c? c2 ri?

o 2 C4 ré/Z

(N=1N+g_sAin=gg 5 (69
c? ct ri?

— 0

p(r)Ep(r)+ 87TGAim:87TG 4['5/2. (70)

an estimate for Eq(60), giving P/p(r,)~10"4.

One may choose other parameters, for instance, so that
the wormhole mass is of the same order of the Sun’s mass.
Considering a traversal with a velocity="5.4x 10° m/s, we
may choose that the wormhole throat is given =9
X 107 m. If we consider an extremely fast trip, where the
traversal time is given b 7yayee= 3.7 S, the matter distri-
bution extends from, to a=10* m. In this case the mass of
the wormhole is given byM~2x10°° kg, which is the
Sun’s mass. From Eq60) an estimate toP is P/p(r,)
~5.7xX 10°. We have an extremely large surface pressure. As
the wormhole mass is decreased, one sees that a larger tan-

To find an estimate of the surface pressure at the thin'shelbential surface pressure is needed to Support the structure.

one has P/p(r,)=4r2GM/Arc?a’[1—(2GM/c?a)] *?
[see Eq(60)].

Fromb(a)=2GM/c? andb(a)=(r.a)*? one finds that

the matching occurs at

_ (2GM/c?)?

- (7

a

b. b(r)=r2/r. Consider now,
O(r)=y, (74)
b(r)=r2/r. (75)

One can use again the Einstein equati®@®—(31) to find

Now in order that the wormhole is not a black hole one haghe properties of this wormhole. We will not do it here. The

to imposea>2GM/c?. Then, from Eq.(71) one findsr,

<2GM/c?. From Eq.(71), we also extract the mass of the

wormbhole, given byM =c?(r ,a) Y% (2G).

The interior metricy ,<r<a, is determined recalling that

e2®*@=[1—r,/a]. It is given by

fo dr?
ds?= —( 1- \ﬁ) ] N
a ro
e
r

+r2(de%+sirfod¢?). (72
The exterior metricasr <o, is given by
2 ( \/roa) - dr?
ds*=—| 1— ——|codt“+
r \rea
1_
;
+r2(de?+sirfod¢?). (73

interior solution is the same as the one found by HUi8].

The properties are commented on[ih22]. Harris showed
further that it is a solution of the Einstein equations with a
stress-energy tensor of a peculiar massless scalar{#8]ld
From the traversability conditions one finds that this type of
wormhole can have much lower masses than the previous
type. One can find wormholes about the Earth’s mass.

B. Specific solutions of traversable wormholes withA .,=~>0
(asymptotically de Sitter wormhole9

1. Matching to an exterior Schwarzschilede Sitter solution,
with P=0

In this section we will be interested in a matching of an
interior solution with an exterior Schwarzschild—de Sitter so-
lution, 7o,=0 andA >0, at a boundary surfac®=0. We
verify from Eq. (63) that the following condition holds:

c? c*

Tinl(@) + _Aint:%

87G Aext

(76)
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at the surface boundary. Considering E80D), we have D(r)=dy, (84)
b(a)=Ae@>. (77 b(r)=r2r. (85)
Substituting this value in Eq54), one obtains the mass of one can use the same procedure to find the properties of this
the wormhole, given by wormhole. In this case one can find a wormhole with the
o2 mass of an asteroidV[=1.5x 10'° Kg) for a cosmological
M= ==Ag@’. (78)  constant with a value equal to its present valugeg
3G =10"%m™?).
We shall next consider identical shape functions as in the , Matching to an exterior Schwarzschilede Sitter solution,
above section. with P#£0

a. b(r)=(rqr)Y2 Consider the following functions: o ) . .
One can also match the interior solution with an exterior

D(r)=d,, (79 Schwarzschild—de Sitter solutiorrd,=0 and Ag>0) in
the presence of a thin-shefp#0. From Eq.(63), we have
b(r)=(rqr)*2 (80)  the behavior of the radial tension at the thin-shell, given by
4 4
From b(a)=A@° and b(a)=(r,a)*? one sees that the c _ 2 @
matching occurs at Tin(8) + 87G Aim_8q-rG Aeat a’e (86)
r[1)/5 The shape function at the junction is given by Es). From
a=-—r:. (81 Eq. (54), one verifies that the mass of the wormhole is zero
Aex whenb(a) = A ,@a°%3, is positive wherb(a)> A .,a>/3, and

is negative whem(a) <A .,@a°/3. One can perform a similar

2 112
The mass can then be expressedvies c“(r,a)~9/(3G). It analysis as done for the previous examples.

can be shown that the interior solution=r=<a, is identical

to Eq.(72), i.e., . . .
a.(72 C. Specific solutions of traversable wormholes with\,;<0

p dr2 (asymptotically anti—de Sitter wormhole9
[0}
ds’= —( 1- \/;) cdt?+ ————— 1. Matching to an exterior Schwarzschildanti—de Sitter

( 1— \/E’> solution, with P=0
r

From Eq.(63), matching an interior solution with an ex-
terior given by the Schwarzschild—anti—de Sitter solution

20492+ ai 2
+ri(de*+sinodg?). (82) (7ex=0 andA .,<0), at a boundary surfacB=0, yields
The exterior solutiona<r <o, is given by the following ct ct
metric: Tin(@) + g—= A=~ g5 [ Aed, (87
2(ra)t? Y72 L
de2=—|1->%7 _° |c2g¢2 at the surface boundary. Considering E80), we have
3r 3a5/2
b(a)=—[Aeda’. (88)
dr?
+ TR +r2(de%+sirfod¢?). From Eq.(23), we concluded that the shape function has to
1 2(rga)™" 1T be positive to guarantee that the factgr/b—1 is real.
3r 33572 Therefore, for the anti—de Sitter exterior, i.8.,,<0, with

P=0 there is no solution. This problem may be overcome by
(83 considering a matching to an exterior anti—de Sitter solution

The spacetime of the final solution is given by the metrics,wIth a thin-shell, i.e.p#0.

Egs.(82), (83), which have been smoothly joined at
The additional parameter now is the cosmological con-
stant,A ¢y, given byA o= (r./a% 2 For instance, consider

2. Matching to an exterior Schwarzschitdanti—de Sitter
solution, with P#0

a traversal velocity =0.01c, so thatr,=5x10° m. If the From Eq.(53), one finds thab(a) is positive if
observer traverses through the wormhole comfortably during

a year, A Tyaeer~3.16X 10" s, anda=4.74x 10" m. The 2GM |Aed 4 89
mass of the wormhole iM~2.2x 10°® kg and the cosmo- 2 - 3 & ®9

logical constant has the valuky,=4.6X10 % m~2. The

cosmological event horizon is then situated rat=8.1  Then one can construct easily wormholes in anti-de Sitter

X 10"° m~200a. spacetime, and again perform a similar analysis as done for
b. b(r)=r§/r. Consider now the functions the previous examples.
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IV. CONCLUSIONS surface pressur®, by imposing values for the traversal ve-
locity and the traversal time.

We have considered Morris-Thorne wormholes, i.e., static
and spherically symmetric traversable wormholes, in the
presence of a nonvanishing cosmological constant. Matching J.P.S.L. thanks Joseph Katz and Donald Lynden-Bell for

the interior solution with a vacuum exterior solution, we t€aching many years ago how to do junctions in an easy way,
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